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Abstract
Making use of the diagrammatic techniques in perturbation theory, we have
investigated theoretically the spin–orbit scattering effects in a layered quasi-
two-dimensional disordered electron system. The analytical expressions for
the magnetoconductivities due to weak-localization effects have been obtained
as functions of elastic, inelastic and spin–orbit scattering times. The relevant
dimensional crossover, from three-dimensional to two-dimensional behaviour,
with decreasing interlayer coupling has been discussed, and the condition for
the crossover has been obtained.

1. Introduction

For the last two decades, Anderson localization of disordered electron systems by elastic
scattering from static impurities has been a topic of serious study [1, 2]. According to the
scaling theory of the pioneering work of Abrahams et al [3], all electronic states in one- and
two-dimensional (1D and 2D) disordered systems are localized irrespective of the degree of
randomness, while in three-dimensional (3D) systems there exist metal–insulator transitions
due to Anderson localization. (It must of course be mentioned at this point that recent
experiments [4] have found a metal–insulator transition also in a 2D disordered system;
however, this is probably due to the interference of interaction effects and does not play
a role in the present context.) In recent years, however, quasi-2D electron systems have
attracted a great deal of attention because of their unique physical properties. A positive
magnetoresistance due to suppression of antilocalization in a CdTe/Hg1−yCdyTe superlattice
has been studied experimentally by Moyle, Cheung and Ong [5]. Szott, Jedrzejek and Kirk
have completed the measurements and made extended studies of negative magnetoresistance
effects in a GaAs/AlxGa1−xAs superlattice [6]. Another example of a quasi-2D electron
system is the layered high-Tc cuprates. The logarithmic increase of resistivity with decreasing
temperature in a magnetic field suppressing superconductivity in La2−xSrxCuO4 [7] and La-
doped Bi2Sr2CuO7 [8] is attributed to weak-localization effects [2]. These experimental results
provide motivation for a theoretical investigation of weak-localization effects in quasi-2D
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disordered electron systems [9–13]. In a recent work [13], Abrikosov calculated the quantum
interference corrections for a quasi-2D metal to the conductivity as a function of temperature
and magnetic field, and discussed the dimensional crossover from 3D to 2D behaviour with
decreasing interlayer coupling.

Weak localization is a quantum effect that results from constructive interference between
closed electron paths and their time-reversed counterparts. This constructive interference
increases the probability of backscattering and results in an increase in resistivity over the
classical Drude value. In this work, we will study theoretically the spin–orbit scattering effects
on the weak localization in a quasi-2D disordered electron system, which were not considered in
the above-mentioned theoretical works. In the presence of spin–orbit scatterings, the quantum
interference becomes suppressed due to the rotation of the electron spin [2]. Therefore spin–
orbit scatterings must have a very important influence on the transport properties of a quasi-2D
system, as well as on the dimensional crossover from 3D to 2D behaviour. By means of the
diagrammatic techniques in perturbation theory, we will calculate the magnetoresistance due
to weak-localization effects for a quasi-2D disordered electron system in the presence of spin–
orbit scatterings, and discuss the relevant dimensional crossover from 3D to 2D behaviour with
decreasing interlayer coupling.

In section 2, we will present the model for a layered quasi-2D disordered electron system,
and calculate the Boltzmann conductivities of this model. In perturbation theory, the so-
called cooperon (particle–particle propagator) is responsible for weak-localization effects;
therefore we will, in section 3, derive the expression for a cooperon in the presence of spin–
orbit scatterings in a magnetic field perpendicular to the layers. The evaluation of the weak-
localization corrections to the magnetoconductivities will be presented in section 4. Finally a
brief summary is given in section 5.

2. The model for a quasi-2D disordered electron system

Let us consider a quasi-2D disordered electron system with the following energy spectrum:

εk = k2
‖/2m− t cos(kza) (1)

where k‖ = (kx, ky) and kz are wavevectors along the planar and z-directions respectively, m
is the in-plane effective mass, a is the period of the structure along the z-axis, t is the interlayer
hopping energy which is assumed to be much smaller than the Fermi energy εF . It is easily
shown that the Fermi surface of this model is a slightly corrugated cylinder, the density of states
per spin at the Fermi energy is N = m/2πa and the electron density is given by n = k2

F /2πa
with kF = mvF = √

2mεF .
Let us consider spin–orbit scatterings. If an electron with spin σ is scattered by a potential

uδ(r) from the state k into the state k′, the Born amplitude of the scattering is given by
u[1 + iη(k × k′) · σ] with η being a small constant. The impurity-averaged retarded and
advanced Green’s functions for the conduction electrons are given by

GRA(k, ω) = (ω − ξk ± i/2τ)−1 (2)

where ξk = εk − εF and τ−1 = τ−1
0 + τ−1

i + τ−1
so , with τ0, τi and τso being the elastic,

inelastic and spin–orbit scattering times respectively. Using the Born approximation, we have
τ−1

0 = 2πNniu2 and

τ−1
so =

∑
µ

(τµso)
−1 = 2πNniu

2η2
∑
µ

〈(k × k′)2µ〉F

where ni is the concentration of impurities and 〈(k × k′)2µ〉F represents the average over
the Fermi surface [14]. The inelastic scattering time τi depends on the temperature due to
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electron–electron or electron–phonon interactions. In the weak-disorder regime, ni is assumed
to be so small that ε−1

F 
 τ0 
 τso, τi .
The diffusion constant and the mean free path along the µ-direction are defined by

Dµ = 〈v2
µ〉F τ and lµ = (Dµτ)

1/2 respectively, where 〈v2
µ〉F represents the mean square

velocity on the Fermi surface. Making use of the dispersion relation (1), one can easily
obtain D‖ = v2

F τ/2 and Dz = t2a2τ/2. The Boltzmann dc conductivities can be easily
calculated through the well-known Einstein relation σµ = 2e2NDµ, yielding σ‖ = ne2τ/m

and σz = e2mat2τ/2π .
It is important to emphasize that both Boltzmann theory and weak-localization theory are

correct within the region where the quasiclassical approximation is valid; therefore we must
distinguish two different cases:

(i) τ−1 
 t 
 εF , meaning that l‖ � λF (Fermi wavelength) and lz � a; in this case the
quasiclassical method is valid for all directions;

(ii) t � τ−1 
 εF , meaning that l‖ � λF and lz � a; in this case the quasiclassical method
is valid only for the planar direction.

3. The cooperon in the presence of spin–orbit scatterings and the magnetic field

Let us consider an external magnetic field perpendicular to the layers, which is described by
the vector potential A = (−Hy, 0, 0). We assume that the field is weak enough that τ 
 τH
with τH = c/4eHD‖, which means that the in-plane mean free path is much shorter than the
magnetic length. It is favourable to perform the calculation in real space instead of momentum
space. The vector potential modifies the phase of the wavefunctions of electrons which results
in a partial destruction of the quantum interference. Then the Green’s functions in the presence
of the magnetic field are given by [15]

G̃RA(r, r′;ω) = GRA(r, r′;ω) exp

[
ie

∫ r′

r

A(s) · ds

]
(3)

where the integral is along a straight line connecting r and r′, and where G̃RA and GRA

are the Green’s functions in the presence or absence, respectively, of a magnetic field. The
cooperon responsible for weak-localization effects is the particle–particle propagator, which
can be diagrammatically represented as in figure 1. The dashed lines with crosses represent
the impurity-averaged amplitude, which can be expressed by [14]

Wαα′,ββ ′ = (2πNτ0)
−1

[
δαα′δββ ′ −

∑
µ

(τ0/τ
µ
so)σ

µ

αα′σ
µ

ββ ′

]
(4)

Figure 1. Diagrams for the cooperon.
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where σµ (µ = x, y, z) are the Pauli matrices, and the first and second terms in equation (4)
correspond to normal and spin–orbit scatterings respectively. The cooperon is described by
the following equation:

C(r, r′;ω)αα′,ββ ′ = Wαα′,ββ ′δ(r − r′) +
∑
α1β1

∫
d3r1 Wαα1,ββ1K(r, r1;ω)C(r1, r

′;ω)α1α′,β1β ′

(5)

where the kernel K(r, r1;ω) is defined by

K(r, r1;ω) = G̃R(r, r1;ω)G̃A(r, r1; 0). (6)

In order to compute C(r, r′;ω)αα′,ββ ′ in equation (5), we shall try to solve the following
integral equation:∫

d3r ′ K(r, r′;ω)ψ(r′) = K(ω)ψ(r). (7)

If ω is so small that ωτ 
 1, one can solve equation (7) using a method similar to the one
applied to a purely 2D system [15], obtaining the eigenfunctions and eigenvalues of the kernel
K(r, r′;ω) as follows:

ψnqxqz (r) = exp(iqxx)ψn(y − cqx/2eH)φqz(z) (8)

K(n, qz;ω) = 2πNτ
[
1 + iωτ − (n + 1/2)τ/τH − (2lz/a)

2 sin2(qza/2)
]

(9)

whereψn is the eigenfunction of an oscillator and φqz(z) is the Bloch wavefunction along the z-
direction. Now we can expandK(r, r′;ω) andC(r, r′;ω)αα′,ββ ′ in terms of the eigenfunctions
(8), obtaining

K(r, r′;ω) =
∑
nqxqz

K(n, qz;ω)ψnqxqz (r)ψ∗
nqxqz

(r′) (10)

C(r, r′;ω)αα′,ββ ′ =
∑
nqxqz

C(n, qz;ω)αα′,ββ ′ψnqxqz (r)ψ
∗
nqxqz

(r′). (11)

Substituting equations (10) and (11) into equation (5), we obtain

C(n, qz;ω)αα′,ββ ′ = Wαα′,ββ ′ +K(n, qz;ω)
∑
α1β1

Wαα1,ββ!C(n, qz;ω)α1α′,β1β ′ . (12)

We expect the expression for the cooperon to have the same structure as the scattering amplitude,
assuming that

C(n, qz;ω)αα′,ββ ′ = (2πNτ)−1

(
Aδαα′δββ ′ +

∑
µ

Bµσ
µ

αα′σ
µ

ββ ′

)
. (13)

Substituting equations (4), (9) and (13) into (12), one can calculate the values of A and Bµ,
which yields∑
αβ

C(n, qz;ω)αβ,βα = (2πNτ)−1(2A + 2
∑
µ

Bµ)

= (2πNτ)−1
{
2[F(n, qz;ω) + λ1]−1

+ [F(n, qz;ω) + λ2]−1 − [F(n, qz;ω) + λ3]−1
}

(14)

where

λ1 = τ/τi + 2τ/τ ‖
so + 2τ/τ zso λ2 = τ/τi + 4τ/τ ‖

so λ3 = τ/τi

and

F(n, qz;ω) = (n + 1/2)τ/τH + (2lz/a)
2 sin2(qza/2)− iωτ.

Equation (14) is an expression for the cooperon which has a different form from that for a
3D system with anisotropic effective masses due to the special structure of the energy spectrum
in the quasi-2D system, and will be used in the following calculation.
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4. Magnetoresistance due to weak-localization effects

The calculation for conductivities in the quasiclassical approximation can be easily performed
by means of the Kubo formalism. In the presence of a magnetic field, the quantum interference
correction to the conductivity along the µ-direction is given by [2, 15]

σ [WL]
µ = (e2/2π)

∑
k

∑
nqxqz

∑
αβ

vµ(k)vµ(−k)|GR(k, 0)|4C(n, qz;ω)αβ,βα (15)

where ω 
 τ−1 is the frequency of the applied field and vµ(k) = ∂εk/∂kµ is the velocity of
electrons along the µ-direction. We can easily perform the integrations over k and qx , getting

σ [WL]
µ

σµ
= −eHτ

2

πc

τH /τ∑
n=0

∑
qz

∑
αβ

C(n, qz;ω)αβ,βα. (16)

Substituting equation (14) into (16), we get the general expression for the relative corrections
to the conductivities:

σ [WL]
µ

σµ
= −ωcτa

π

τH /τ∑
n=0

∑
qz

{
2[F(n, qz;ω) + λ1]−1

+ [F(n, qz;ω) + λ2]−1 − [F(n, qz;ω) + λ3]−1
}

(17)

where ωc = eH/mc is the cyclotron frequency. In order to discuss the dimensional crossover
from 3D to 2D behaviour, we will set ω = 0 and study several limiting cases.

If the interlayer hopping energy t is large enough that τ−1 
 t 
 εF , meaning that
l‖ � λF and lz � a, then the quasiclassical approximation is valid for all directions, and the
main contribution to equation (17) arises from |qz| 
 l−1

z . Replacing the summation over qz
by the integral

∫ l−1
z

−l−1
z

dqz
2π

we get

σ [WL]
µ (H)

σµ
= − ωc√

2πt

√
τH

τ

τH /τ∑
n=0

[
2

(
n +

1

2
+ λ1

τH

τ

)−1/2

+

(
n +

1

2
+ λ2

τH

τ

)−1/2

−
(
n +

1

2
+ λ3

τH

τ

)−1/2]
. (18)

WhenH → 0, meaning that τH → ∞, one can replace the summation over n in equation (18)
by an integration, obtaining

σ [WL]
µ (0)

σµ
= − 1√

2πtεF τ 2

[
2(

√
1 + λ1 −

√
λ1) + (

√
1 + λ2 −

√
λ2)− (

√
1 + λ3 −

√
λ3)

]
.

(19)

Combining equations (18) and (19), we obtain the results for magnetoconductivities due to
weak-localization effects:

4σµ(H)

σµ
= σ [WL]

µ (H)− σ [WL]
µ (0)

σµ

= ωc√
2πt

√
τH

τ

[
2f

(
λ1
τH

τ

)
+ f

(
λ2
τH

τ

)
− f

(
λ3
τH

τ

)]
(20)



3332 Y H Yang

where the function f (x) is defined by

f (x) =
∞∑
n=0

[
2(n + 1 + x)1/2 − 2(n + x)1/2 −

(
n +

1

2
+ x

)−1/2]
.

The dependence of magnetic field in equation (20) is characteristic behaviour for a 3D
system [16].

If the interlayer hopping energy t is small enough that t � τ−1 
 εF , meaning that
l‖ � λF and lz � a, then the quasiclassical approximation is valid only for the planar
direction. Replacing the summation over qz in equation (17) by the integral∫ π/a

−π/a

dqz
2π

we can get

σ
[WL]
‖ (H)

σ‖
= − 1

4πεF τ

τH /τ∑
n=0

[2F1(n) + F2(n)− F3(n)] (21)

where

Fl(n) =
[(
n +

1

2
+ λl

τH

τ
+ t2ττH

)2

− (t2ττH )
2

]−1/2

(l = 1, 2, 3).

WhenH → 0, meaning that τH → ∞, we can replace the summation over n in equation (21)
by an integration, obtaining

σ
[WL]
‖ (0)

σ‖
= − 1

4πεF τ
(2F1 + F2 − F3) (22)

where

Fl = ln

[
1 + λl + t2τ 2 +

√
(1 + λl + t2τ 2)2 − (t2τ 2)2

λl + t2τ 2 +
√
(λl + t2τ 2)2 − (t2τ 2)2

]
(l = 1, 2, 3).

Combining equations (21) and (22), one can get the expression for the magnetoconductivity
along the planar direction:

4σ‖(H)
σ‖

= 1

4πεF τ

[
2F

(
λ1
τH

τ
, t2ττH

)
+ F

(
λ2
τH

τ
, t2ττH

)
− F

(
λ3
τH

τ
, t2ττH

)]
(23)

where the function F(x, y) is defined by

F(x, y) =
∞∑
n=0

{
ln
n + 1 + x + y +

√
(n + 1 + x + y)2 − y2

n + x + y +
√
(n + x + y)2 − y2

−
[
(n +

1

2
+ x + y)2 − y2

]−1/2}

≈ ψ

(
1

2
+ x

)
− ln x (if x � y)

with ψ(x) being the well-known digamma function.
In the case of t 
 √

λl/τ , meaning that λlτH/τ � t2ττH (l = 1, 2, 3), equation (23)
changes to

4σ‖(H)
σ‖

= 1

4πεF τ

[
2ψ

(
1

2
+ λ1

τH

τ

)
− 2 ln

(
λ1
τH

τ

)

+ ψ

(
1

2
+ λ2

τH

τ

)
− ln

(
λ2
τH

τ

)
− ψ

(
1

2
+ λ3

τH

τ

)
+ ln

(
λ3
τH

τ

)]
(24)

which is the exact result found for a purely 2D system [2]. From equations (20), (23) and (24),
one can see that there exists a dimensional crossover from 3D to 2D behaviour with decreasing
interlayer hopping energy.
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5. Conclusions

In this work, we have investigated the spin–orbit scattering effects in a quasi-2D disordered
electron system. By means of the diagrammatic techniques in perturbation theory, we have
calculated the magnetoresistances due to weak-localization effects. The analytical results for
the magnetoconductivities have been obtained as functions of the characteristic times: elastic,
inelastic and spin–orbit scattering times. We show that all of these scattering times have very
important influences on the relevant dimensional crossover from 3D to 2D. In the 3D limit of
t � τ−1, the relative magnetoconductivities due to weak-localization effects are independent
of directions, and have a similar dependence on field to that of an isotropic 3D system. If
the interlayer coupling t is small enough that t � τ−1, the quasiclassical approximation
for transport properties is not valid for the z-direction and the planar magnetoconductivity
has a very complex dependence on the magnetic field (see equation (23)). In the 2D case
of t 
 √

λl/τ , the planar magnetoconductivity is exactly the same as in an isotropic 2D
system. Therefore, the relevant dimensional crossover from 3D to 2D occurs in the region√
λl/τ � t � τ−1.
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